Finite element, discontinuous Galerkin, and finite difference evolution schemes in spacetime

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite Element, Discontinuous Galerkin, and Finite Difference Evolution Schemes in Spacetime

Numerical schemes for Einstein’s vacuum equation are developed. Einstein’s equation in harmonic gauge is second order symmetric hyperbolic. It is discretized in four-dimensional spacetime by Finite Differences, Finite Elements, and Interior Penalty Discontinuous Galerkin methods, the latter related to Regge calculus. The schemes are split into space and time and new time-stepping schemes for wa...

متن کامل

Superconvergence and time evolution of discontinuous Galerkin finite element solutions

In this paper, we study the convergence and time evolution of the error between the discontinuous Galerkin (DG) finite element solution and the exact solution for conservation laws when upwind fluxes are used. We prove that if we apply piecewise linear polynomials to a linear scalar equation, the DG solution will be superconvergent towards a particular projection of the exact solution. Thus, th...

متن کامل

High Order Finite Difference and Finite Volume WENO Schemes and Discontinuous Galerkin Methods for CFD

In recent years high order numerical methods have been widely used in computational uid dynamics (CFD), to e ectively resolve complex ow features using meshes which are reasonable for today's computers. In this paper we review and compare three types of high order methods being used in CFD, namely the weighted essentially non-oscillatory (WENO) nite di erence methods, the WENO nite volume metho...

متن کامل

Adaptive Unstructured Spacetime Meshing for Four-dimensional Spacetime Discontinuous Galerkin Finite Element Methods

We describe the spacetime discontinuous Galerkin method, a new type of finite-element method which promises dramatic improvement in solution speed for hyperbolic problems. These methods require the generation of spacetime meshes that satisfy a special causality constraint. This work focuses on the extension of the existing 2d×time spacetime meshing algorithm known as TentPitcher to 3d×time prob...

متن کامل

Parallel Iterative Discontinuous Galerkin Finite-element Methods

We compare an iterative asynchronous parallel algorithm for the solution of partial diierential equations, with a synchronous algorithm , in terms of termination detection schemes and performance. Both algorithms are based on discontinuous Galerkin nite-element methods, in which the local elements provide a natural decomposition of the problem into computationally-independent sets. We demonstra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Classical and Quantum Gravity

سال: 2009

ISSN: 0264-9381,1361-6382

DOI: 10.1088/0264-9381/26/17/175011